

Xie, Jiulong, Chung-Yun Hse, Todd F. Shupe., Rapid delignification of bamboo particles by a modified microwave-assisted solvolysis liquefaction process using a binary glycerol/methanol solvent. Abstracts of the FPS 69th International Convention, June 10-12, 2015, Atlanta, GA

POSTER NUMBER: 28

Title: Rapid Delignification of Bamboo Particles by a Modified Microwave-assisted Solvolysis Liquefaction Process Using a Binary Glycerol/Methanol Solvent

Authors:

Jiulong Xie, School of Renewable Natural Resources, Louisiana State University Chung-Yun Hse, Southern Research Station - USDA Forest Service Todd F. Shupe, Louisiana State University Agricultural Center

Abstract

Bioconversion of lignocellulosic biomass to biofuels and isolation of cellulosic fibers from renewable natural resources requires significant delignified biomass. For the industrial scale production of cellulosic or carbohydrate products, a high-efficiency, low-cost, and environmentally-friendly delignification process is needed. This study focused on the use of microwave-assisted solvolysis liquefaction process as a novel method for the delignification of bamboo. The results showed that lignin in bamboo particles was almost completely removed by using an optimized process (120oC/9min), and the residual lignin in the delignified fibers was as low as 0.65%. Small cracks were observed on the SEM images of the delignified fibers which indicated that the isolated fibers may be more susceptible to chemical access and or enzyme attack.