
THEORETICAL MODELING AND EXPERIMENTAL ANALYSES OF
LAMINATED WOOD COMPOSITE POLES1

Cheng Piao
Postdoctoral Research Scientist

Todd F. Shupe†
Associate Professor

School of Renewable Natural Resources
Louisiana State University AgCenter

Baton Rouge, LA 70803

Vijaya Gopu
Professor and Chair

Civil and Environmental Engineering
Tulane University

New Orleans, LA 70118

and

Chung Y. Hse†
Principle Wood Scientist

USDA Forest Service
Southern Research Station

Pineville, LA 71360

(Received April 2003)

ABSTRACT

Wood laminated composite poles consist of trapezoid-shaped wood strips bonded with synthetic resin.
The thick-walled hollow poles had adequate strength and stiffness properties and were a promising
substitute for solid wood poles. It was necessary to develop theoretical models to facilitate the manufac-
ture and future installation and maintenance of this novel engineered wood product. A higher-order
governing differential equation (GDE) model was developed for this purpose based on the principle of
minimum potential energy. Transverse shear and glue-line effects were taken into account in the devel-
opment of the model. A simplified theoretical model was also derived to further validate the higher-order
GDE model. Thirty-six small-scale wood laminated composite poles were made and tested to validate the
models developed. Strip thickness and number of strips were chosen as experimental variables. The
deflection predicted by the theoretical models agreed well with those measured in experiment. The
agreement with the results predicted by the simplified theoretical model was better than that with those
predicted by the higher-order GDE model.

Keywords: Beams, composites, energy methods, higher-order differential equation, poles, thick-shell,
Timoshenko beam theory, variational methods.

INTRODUCTION

Wood laminated composite poles are thick-
walled members with a polygonal cross-section.

The hollow poles have adequate strength and
stiffness properties but are lower in weight,
when compared to solid wood poles. The advan-
tages of wood composite poles include: (1) they
can be produced from renewable natural re-
sources; (2) they can be made from low quality
materials, such as small logs and processing
residues; and (3) they can be easily treated.

1 This paper (No. 03-40-1172) is published with the ap-
proval of the Director of the Louisiana Agricultural Experi-
ment Station.

† Member of SWST.

Wood and Fiber Science, 37(4), 2005, pp. 662 – 672
© 2005 by the Society of Wood Science and Technology



These advantages make the hollow pole superior
to solid wood poles or poles made from other
materials for similar applications. To enhance
material and structural efficiencies of these
members, theoretical research is needed.

The classical Bernoulli-Euler theory has long
been used in structural analysis and design of
slender beams. The main assumption in this
theory is that transverse plane sections that are
normal to the beam middle plane before bending
remain plane and normal to beam middle plane
after bending. This assumption implies that the
transverse shear strain and deformation are neg-
ligible. The Bernoulli-Euler theory may lead to
serious discrepancies in the case of deep beams
with small slender ratios (L/h). Grashof (1878)
and Rankine (1895) conducted earlier investiga-
tions of the shear effect on the elastic deflection
curve of beams. Timoshenko (1921) improved
the validity of the Bernoulli-Euler theory by in-
corporating the effect of transverse shear into the
governing equations. The Timoshenko theory
assumed that the cross-section remains plane af-
ter bending and the shear stress is uniform
throughout the thickness of the beam. In order to
recognize the nonuniform shear stress distribu-
tion at a section, a factor was introduced into the
shear stress formula. Numerous other theories
have been proposed to include the transverse
shear and to improve upon the Timoshenko
theory in the last three decades (Rehfield and
Murthy 1982; Kant and Gupta 1988; Valisetty
1990; Kathnelson 1996). None of these theories
have dealt with thick-walled and polygonal
beams. A classical theory of shear stress distri-
bution in a cross-section was developed by Ti-
moshenko (1976). The shear stress distribution
can be related to the deformation of a beam and
thus can be included in a higher-order governing
differential equation, from which the governing
equation can be obtained.

One of the earliest studies of shear effects on
deflection in wood members was done by Biblis
(1965). Two methods were used in his study,
i.e., an elementary method and the energy
method. In the elementary method, it was as-
sumed that all cross-sections were free to deform
and the curve due to shear was represented by

two straight lines, whereas the energy method
had no such assumptions and was more accurate.

This study deals with development of a
higher-order governing differential equation
(GDE) model that takes into account the effects
of shear. The higher-order GDE was derived
based on the principle of minimum potential en-
ergy. A simplified beam model was also derived
to validate the higher-order GDE model. Energy
concepts were also used to derive the simplified
model, and a factor was introduced to correct the
errors caused by the assumption of uniform-
shear.

The objectives of the study were to:

1. Develop a theoretical model to analyze hol-
low, polygonal-shaped composite poles
based on higher-order governing differential
equations and the principle of minimum po-
tential energy.

2. Utilize the simplified beam theory to com-
pare the results predicted by the higher-order
GDE model.

3. Evaluate effects of glue-lines on the deflec-
tion of composite poles.

4. Evaluate transverse shear effects on the de-
flection of hollow irregular-shaped wood
composite poles.

HIGHER-ORDER GOVERNING DIFFERENTIAL

EQUATION MODEL

The composite poles (Fig. 1) investigated in
this study are composed of a number of wood
strips bonded with an adhesive such as resor-
cinol-phenol-formaldehyde resin. Since the
thickness of the strips is less than the outer ra-
dius of the circle enclosing the cross-section, the
poles are hollow inside. Figure 1 shows a typical
geometry and lay-up of a polygonal wood com-
posite pole and its right-hand set of coordinate
axes x, y, and z. The corresponding axial dis-
placements are u, v, and w.

The lateral displacement (w) of the pole was
assumed to consist of four parts: bending and
shear deformations of the wood strips and glue
layers. In this study, the normal and shear strain
energies for wood and glue layers were derived.
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Since the thickness of each glue layer is much
thinner than that of a wood strip, glue layer
thickness was neglected in the analysis of strain
energy of wood strips. Strain energy stored in
glue layers was analyzed separately from wood
strips.

The normal stress in the pole can be expressed
as

�x =
Mz

I
(1)

where M is bending moment, z the z coordinate,
and I is the moment of inertia of the cross-
section of the pole with respect to the y axis. The
shear stress is given as

�xy =
dM

dx

1

bI �z

R
zdA =

VQ

Ib
(2)

where V is the vertical shear force, b the width of
the wood shell measured at z and parallel to the
y axis, Q the first moment of the pole cross-
section, and R the radius of the enclosing circle
of the pole. Equation (2) can be used to calculate
the shear strain energy of the pole and included
in the higher-order differential equation by re-
lating the shear stress distribution to the defor-
mation of a beam. The normal and shear strain
energy density functions for a beam are first

calculated. In the Cartesian coordinate system,
they are defined as (elementary mechanics)

W� =
1

2
�x�x (3)

W� =
1

2
�xy�xy (4)

where �x is the normal strain and �xy the shear
strain. They are expressed as follows:

�x =
dux

dx
= −z

d2w

dx2 (5)

�xy =
�xy

G
(6)

where G is the modulus of rigidity of wood
(764.8 MPa (0.11 Mpsi) (Bodig and Jayne
(1982))). Thus, the strain energy functions be-
come

W� =
1

2
�x�x =

1

2
E�x

2 =
1

2
E�d2w

dx2 �2

z2 (7)

W� =
1

2
�xy�xy =

1

2

�xy
2

G
=

1

2

V2Q2

GI2b2 (8)

where E is the Young’s modulus of the wood. E
values were determined in an experimental study
of the composite poles. Equation (8) is still a
formula, which can be transformed and related
to the deformation of the poles. Substituting
V � −EI(d3w/dx3) in Eq. (8) we have

W� =
1

2

V2Q2

GI2b2 =
1

2

E2Q2

Gb2 �d3w

dx3 �2

(9)

After integrating Eqs. (7) and (9) with respect to
y and z and substituting the value of I, the nor-
mal strain energy and shear strain energy of the
wood would be as follows:

U� =
EI

2 �
0

L �d2w

dx2 �2

dx (10)

U� =
E2

2G �
0

L �d3w

dx3 �2

dx �
A

Q2

b2 dydz (11)

FIG. 1. A schematic diagram of a wood composite pole
and its coordinates.
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Let k1 � ∫A(Q2/b2)dydz and substitute it in Eq.
(11), then shear strain energy for the wood in the
pole has the form

U� =
k1E2

2G �
0

L �d3w

dx3 �2

dx (12)

In this study, the pole has 3n (n � 1, 2, 3, . . .)
strips, and thus 3n glue layers. The integer n is
an arbitrary number and chosen based on avail-
able raw materials, pole sizes, and esthetic re-
quirements. Take the 12-strip pole (n � 4) as an
example, it has 12 strips and glue layers, as
shown in Fig. 2. The strain energy of each glue
layer is the sum of strain energy caused by nor-
mal and shear strains. The total strain energy of
the glue layers is the sum of the strain energy for
each glue layer:

Ug = U�−AA� + U�−AA� + U�−BB� + U�−BB� + . . .

+ U�−LL� + U�−LL� = UAA� + UBB� + . . . + ULL�.

where U�−AA�, U�−AA�, . . . are the normal strain
energy of glue-line AA�, shear strain energy of
AA�, etc., and UAA�, UBB�, . . . are the sum of
normal and shear strain energy of AA�, the sum
of normal and shear strain energy of BB�, etc.
Since some of them are equal, the total strain
energy of the glue layers can be expressed as

Ug = 2UAA� + 4UBB� + 4UCC� + 2UDD�

= k6�0

L �d2w

dx2 �2

dx + k7�0

L �d3w

dx3 �2

dx

(13)

where

k6 = Eg�Ig1 + 2Ig2 + 2Ig3�

k7 = k5�k1 + k2 + k3 + k4�

k5 =
Eg

2

2Gg

k4 = 2��
A

Qg1
2

t2Ig1

dA

k3 = 4��
A

Qg2
2

t2Ig2

dA

k2 = 4��
A

Qg3
2

t2Ig3

dA

k1 = 2��
A

Qg4
2

t2Ig4

dA

and Ig1, Ig2, and Ig3 are the moment of inertia of
glue layers, Qg1, Qg2, Qg3, and Qg4 are the first
moment of each of the glue lines, Eg is the
Young’s modulus of glue (approximated at 38.6
TPa (5.6 Mpsi)), Gg is the modulus of rigidity of
glue (approximated at 2.1 TPa (0.31 Mpsi)), A is
the area of the glue-layer cross-section, and t is
the thickness of the glue layers.

The two external forces applied to the pole
system were body force of pole (p0) and the
applied concentrated load (P) at the free end
(Fig. 3). The work done by the external force is
as follows:

H = −�
0

L
p0wdx − Pw�L� (14)

where

H � work done by the external force
p0 � body force of the pole
w � transverse displacement along the

length of the pole L
w(L) � transverse displacement at point L at

the end of the pole
FIG. 2. A schematic diagram of the cross section of a

12-strip pole shell.
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The total potential energy is given as

� = U� + U� + Ug + H (15)

Substituting Eqs. (10), (12), (13), and (14) into
Eq. (15) and rearranging, the total potential en-
ergy is given by

� = k8�0

L �d2w

dx2 �2

dx + k9 �0

L �d3w

dx3 �2

dx

− �
0

L
p0wdx − Pw�L� (16)

where

k8 =
1

2
EI + k6

k9 =
k1E2

2G
+ k7

The principle of minimum potential energy
states that “of all the displacements which sat-
isfy the boundary conditions of a structural sys-
tem, those corresponding to stable equilibrium
configurations make the total potential energy a
relative minimum.” According to this principle,
the system is in equilibrium when the first varia-
tion in � vanishes. Thus the equilibrium condi-
tion is

�� =
��

�x
dx = 0

or

k8�0

L
2

d2w

dx2 ��d2w

dx2 �dx + k9�0

L
2

d3w

dx3 �

�d3w

dx3 � dx − �
0

L
p0�wdx − P�w�L� = 0

(17)

Equation (17) yields one 6th-order differential
equation, which is the governing differential
equation for the pole loading system.

k9

d6w

dx6 + k8

d4w

dx4 −
p0

2
= 0 (18)

with boundary conditions

�k9

d5w

dx5 − k8

d3w

dx3 ��
x=L

=
P

2
(19)

�k8

d2w

dx2 − k9

d4w

dx4 ��
x=L

= 0 (20)

k8

d3w

dx3�
x=0

= 0 (21)

w�x=0 = 0 (22)

w��x=0 = 0 (23)

k8

d2w

dx2�
x=L

= 0 (24)

Equation 18 is a non-homogenous higher-order
differential equation. Solving Eq. (18) using the
boundary conditions, Eqs. (19)–(24), the fol-
lowing solution is obtained

w = C1 + C2x + C3x2 + C4x3 +
1

48k8
p0x4

+ C5ek10x + C6e−k10x (25)

where

k10 =�k8

k9

FIG. 3. The loading system and shear and moment dis-
tribution of a cantilever beam.
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and C1 − C6 are constants and are given as

C1 =
k10�p0L + P� �ek10L − e−k10L� + 2p0

2k8k10
4 �ek10L + e−k10L�

C2 = −
p0L + P

2k8k10
2

C3 =
p0L2 + 2PL

8k8
+

p0

2k8k10
2

C4 = −
p0L + P

12k8

C5 =
k10�p0L + P�e−k15L − p0

2k8k10
4 �ek10L + e−k10L�

C6 = −
k10�p0L + P�e−k15L + p0

2k8k10
4 �ek10L + e−k10L�

A SIMPLIFIED THEORETICAL MODEL

The displacement in the x, y, and z directions
are U, V, and W, respectively. Since U is a func-
tion of (x, y, z), we expand U into a Tylor series
(Washizu 1968; Kant and Gupta 1988) about z
� 0:

U�x, y, z� = U�x, y, 0� + ��U

�z �
z=0

z +
1

2! ��2U

�z2 �
z=0

z2 + . . . (26)

After retaining the first two terms of Eq. (26),

U� = U� 0 + zU� 1 (27)

where U� 1 � u1i�1 + w1i�3. Equation (27) is an
expression that includes the effect of transverse
shear deformation. Two assumptions were
made: (1) a cross-section perpendicular to un-
deformed central line remains perpendicular to
the deformed locus, and (2) the displacement is
small. Then we have

U = u + z u1, V = 0, W = w
�x = u� + z u1�, �xz = w� + u1 (28)

The total strain energy of the pole may be ex-
pressed as

� = ��
V
���x�x + � xz�xz�dxdydz

− �
0

L
p0wdx − Pw (29)

According to principle of minimum potential en-
ergy, the system is in equilibrium when the first
variation in � vanishes:

�� = ��
V
���x�� x + �xz��xz�dxdydz

− �
0

L
p0�wdx − P�w = 0 (30)

Substituting Eq. (28) into Eq. (30), we obtain the
following equation

�
0

L

�N�u� + M�u1 + Q��w� + �u1� − p0�w�dx

− P�w = 0 (31)

where

N = �
S
� �xdydz, M = �

S
��xzdydz,

Q = �
S
� �xzdydz (32a, b, c)

N is the axial force, M the bending moment, and
Q the shear force. Integrate Eq. (31) and rear-
range, and the following Equation can be ob-
tained

�
0

L

�N��u − �Q − M���u1 + �Q� + p0��w�dx

− �N�u − �P − Q��w + M�u1�x=L

+ �N�u + Q�w + M�u1�x=0 = 0 (33)

Then the governing differential equations are as
follows:

Q� = − p0 (34a)

M� = Q (34b)

N� = 0 (34c)

and boundary conditions P � Q|x�L, also

u�0� = w�0� = u1�0��x=0 = 0 (35a)

M�x=L = 0 (35b)
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Based on these boundary conditions, Eq. (34)
can be solved. Substituting Eq. (28) into Eq.
(32), we have

N = �
S
��xdtdz = E �

S
��u� + zu1��dydz

= EAu� (36a)

M = �
S
��xzdydz = E �

S
��xz

2dydz = EIu1�

(36b)

Q = �
S
��xzdydz = E �

S
�G�xzdydz

= Gk�w� + u1� (36c)

where k is a correction factor and determined by
the following formula (Shames and Dym 1985):

k =
6�1 + v��1 + m�2

�7 + 6v��1 + m� + �20 + 12v�m2 (37)

where m = D/d. D is the diameter of enclosing
circle of the cylinder, d is the diameter of the
inscribe cycle, and v is the Poisson ratio. Sub-
stituting Eq. (36) into Eq. (34), we find that no
axial loads are applied,

EIu1� = kGA �w� + u1� (38)

KGA�w� + u1�� = − p0 (39)

Taking derivative of Eq. (38) and substituting
Eq. (39), we have

EIu1�� = kGA�w� + u1�� = − p0

Integrating the above equation three times,

EIu = −
1

6
p0x3 +

1

2
C1x2 + C2x + C3 (40)

where C1, C2, C3 are constants. Solving Eq. (40)
by using the boundary conditions Eq. (35), we
obtain the deflection function of a cantilever
beam subjected to body force and a concentrated
load at the free end:

w =
p0

24EI
x4 −

P + p0L

6EI
x3

+ �2PL + p0L2

4EI
−

p0

2kGA� x2 +
P + p0L

kGA
x

(41)

The maximum deflection is given as

wmax =
PL3

3EI
+

p0L4

8 EI
+

PL

kGA
+

p0L2

2kGA
(42)

The first two terms on the right side of Eq. (42)
are the bending deflection components, and the
last two terms are the shear deflection compo-
nents of the total deflection. It is also noted that
the EI and GA in Eqs. (41) and (42) are for both
wood and glue layers. The maximum deflection
is the sum of both wood strips and glue layers.

EXPERIMENTAL STUDY

An experimental investigation was conducted
on small-scale composite poles to validate the
applicability of the theoretical models. The
length of the poles was 1.22 m (4 ft) and the
diameter was 7.6 cm (3 in.). The species was
southern yellow pine (Pinus, sp). Strip thickness
and number of strips (NOS) were the two vari-
ables. Strip thickness levels were 1.0 cm (0.4
in.), 1.5 cm (0.6 in.), 2.0 cm (0.8 in.), and 2.5 cm
(1.0 in.), each of which had 6, 9, and 12 strips.
Thirty-six small-scale composite poles were
made with three replications for each combina-
tion of NOS and strip thickness levels. Lumber
was first planed to specific thickness and then
cut to target size strips using a table saw. Com-
mercially obtained resorcinol-phenol-formalde-
hyde (RPF) resin was used to bond the strips.
The viscosity and specific gravity of RPF were
800 cps and 1.177, respectively. The glue was
uniformly hand-spread onto the two lateral sur-
faces of each strip at 310 g/m2 (63.3 lbs/1000
ft2). Poles were pressed in molds for 36 h in an
air-conditioned room. Figure 4 shows three
small-scale composite poles pressed in steel
molds.

A cantilever test was performed on the com-
posite poles using a RIEHLE machine. The up-
dated digital control system of the RIEHLE was
connected to a computer. All small-scale com-
posite poles were tested to failure at about 11%
moisture content. The load-deflection curve was
obtained for each pole tested in bending. These
curves were used to compare the results pre-
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dicted by the theoretical models in a specific
load range. In the theoretical study, the Young’s
modulus obtained in the experiment of each pole
was used to predict the deformation of the pole.
Figure 5 shows a small-scale composite pole be-
ing tested in the RIEHLE machine.

RESULTS

Results of theoretical study

The maximum experimental deflections under
different loads are compared with those pre-
dicted by the theoretical models in Table 1. In

this table, each experimental value was the av-
erage of three test results. The results predicted
by the higher-order GDE model were found to
be lower than those predicted by the simplified
model. The experimental values were higher
than those predicted by the theoretical models.

Table 2 presents the calculated maximum
bending stress values based on the elementary
mechanics theory and from the higher-order
GDE model. Stress values calculated agreed
well with those predicted by the models.

The deflections of small-scale composite
poles predicted by the higher-order GDE model
for different strips and thickness levels are
shown in Fig. 6. Figure 6 indicates that the de-
flection decreased with the increase of strip
thickness.

Comparisons were made between results pre-
dicted by the higher-order GDE model and the
simplified model. Figure 7 shows the results.
The values predicted by the two theoretical pro-
cedures were very close.

Shear effects on the deflection of small-scale
poles were calculated by the simplified beam
model and are shown in Fig. 8. Both strip thick-
ness and NOS influence the shear deflection.
Shear effects increased with the decrease of strip
thickness and with the increase of NOS. Deflec-

FIG. 4. Small-scale wood composite poles being pressed
in steel molds.

FIG. 5. A small-scale composite pole being tested in a
RIEHLE machine.

TABLE 1. Comparison among the deflection values from
experiment and theoretical models of small-scale composite
poles with three strip-number levels and four thickness
levels.1

Strip
number

Strip thickness
(cm)

Load
(N)

Exp. deflection
(cm)

GDE2

(cm)
Simplified3

(cm)

12 1.0 178 1.28 1.22 1.28
1.5 178 1.07 1.00 1.05
2.0 445 0.92 0.93 0.97
2.5 445 0.93 0.86 0.90

9 1.0 178 1.92 1.74 1.82
1.5 178 1.16 1.07 1.11
2.0 445 1.38 1.31 1.37
2.5 445 1.09 1.01 1.05

6 1.0 178 1.96 1.85 1.88
1.5 178 1.94 1.91 1.98
2.0 445 1.42 1.38 1.41
2.5 445 1.25 1.23 1.27

1 Tabled experiment and predicted deflection, and errors are the average of
three values.

2 Higher-order governing differential equation model.
3 Simplified beam theory model.
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tion due to shear accounted for only 0.8 to 1.9%
of the total deflection for the pole tested.

Glue-layer effects on the deflection of com-
posite poles were analyzed by the higher-order
GDE model. In the analysis, thickness of the
glue layer was set at 0.10 mm (0.004 in.), and
Young’s modulus and modulus of rigidity of
cured resorcinol-phenol-formaldehyde resin
were approximated as 38.6 and 2.1 TPa (5.6 and
0.31 Mpsi). The first and second moments, and
normal and shear energies of glue lines, were
calculated and included in the models. For the

small-scale poles, deflection attributed to the
glue layers was from 2.3 to 5.5% of the total. No
regular patterns were found on the effects of
strip thickness and number. These results show
that glue-layer effects cannot be neglected. The
strong correlation is attributable to the modulus
of elasticity (MOE) of the adhesive. Since the
MOE value of resorcinol-phenol-formaldehyde
is higher than that of southern yellow pine, the
glue lines in the poles essentially serve as rein-
forcing for the poles. This shows that the wood
composite poles may benefit from being rein-
forced by thin layers of a high strength material
in the pole structure.

FIG. 6. Deflection of 12-sided small-scale composite
poles predicted by a higher-order governing differential
equation model.

FIG. 7. Comparison of deflection of 12-sided small-
scale composite poles predicted by a higher-order governing
differential equation model and a simplified beam model.

TABLE 2. Comparison between the maximum bending stress values calculated by experimental data and predicted by the
higher-order governing differential equation model of small-scale composite poles.

Strip thickness
(cm) 1.0 1.5 2.0 2.5

Sample number 1 2 3 1 2 3 1 2 3 1 2 3

6-strip poles Theoretical
(MPa)

58.71 59.84 58.35 63.61 59.14 74.99 86.16 75.35 70.88 92.05 93.40 93.76

Experimental
(MPa)

60.40 60.79 58.61 61.42 59.72 70.33 85.34 76.26 70.16 92.03 94.70 93.47

9-strip poles Theoretical
(MPa)

48.35 46.73 44.72 64.60 65.69 63.78 69.14 71.62 69.74 86.56 84.86 93.26

Experimental
(MPa)

48.24 46.13 44.91 65.49 67.26 66.49 70.22 67.72 68.57 87.95 84.50 95.37

12-strip poles Theoretical
(MPa)

44.10 33.30 44.30 55.45 44.05 52.09 84.91 75.82 72.93 92.91 69.57 89.78

Experimental
(MPa)

43.00 32.44 43.57 53.78 43.39 49.62 81.53 73.21 69.93 90.62 66.86 85.62
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Remarks on theoretical analysis procedures

A higher-order GDE model developed re-
quires no correction factors that are required by
the simplified theory and Timoshenko beam
theory. Results of this study show that both the
higher-order GDE model and simplified model
agreed well with the experimental results.

Results also show that the simplified model
was more accurate in predicting the deflection of
small-scale composite poles than the higher-
order GDE model. As shown in Eq. (36), the
correction factor in the simplified model was
approximated by a circular thick-shell cross-
section. In practice, the calculation of the cor-
rection factor was not an easy task, especially
when pole cross-section varies along the length,
as in the case of a tapered pole. There was no
such difficulty when using the higher-order
GDE model. Since the dimension of the cross-
section changes, k8 and k9 in Eq. (16) are no
longer constants and can be calculated by inte-
gration. Thus, the higher-order GDE model has
a wider application since variations in the cross-
sections can be accounted for. Development of
simplified theoretical models for tapered com-
posite poles will be a good follow-up study.

The predicted deflection patterns for the
small-scale composite poles are shown in Fig. 6.
As expected, poles with thinner shell thickness

are predicted to have a higher deflection than
those with thicker shells for a given load.

SUMMARY AND CONCLUSIONS

A theoretical model was developed for wood
laminated composite poles based on the prin-
ciple of minimum potential energy. In addition
to the transverse shear effects, the uniform grav-
ity load and glue-line effects were included in
the model. A simplified beam theory was also
derived using the variational method and utilized
to further validate the higher-order GDE model.
These models and analyses will enable future
investigation of composite poles with tapered
forms and joined strips.

The theoretical model was developed based
on Bernoulli-Euler theory and Timoshenko
shear stress distribution theory. The governing
equations were derived and solved, and the de-
formation function was obtained. The method
provides solutions for the cantilever beam with a
uniform load and/or concentrated load at the free
end. Small-scale composite poles were fabri-
cated and tested to validate the theoretical mod-
els. Strip thickness and number of strips (NOS)
were chosen as experimental variables. The ex-
perimental results agreed very well with both
theoretical models. The higher-order GDE
model, though less accurate than the simplified
model in this study, was found to be clearly
more suitable for analyzing complex pole geom-
etries.

Based on the results of this study, the follow-
ing conclusions are made:

1. A higher-order governing differential equa-
tion model was developed and verified by the
experimental results. The correlation of the
higher-order governing differential equation
model with the experimental results was
good.

2. The higher-order governing differential equa-
tion model correlated well with the simplified
beam model. However, the simplified model
was more accurate than the higher-order
GDE model in predicting the deflection of
small-scale composite poles.

FIG. 8. Effects of strip thickness and number of strips on
the shear deflection of small-scale composite poles.
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3. The higher-order GDE model was more suit-
able for analyzing complex pole geometries.

4. Deflection attributable to the glue layers ac-
counted for about 4% of the total deflection
of the composite poles.

5. Shear deflection accounted for 1 to 2% of
total deflection.

6. Laminated composite poles may be rein-
forced by introducing a thin layer of a high
strength material in the pole structure.
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