Characterization of Microwave Liquefied Bamboo Residue

Microwave Liquefaction System

Biomass is widely considered as an important feedstock because of its renewability, ease of degradation, and availability. According to Perlack and Stokes, the current biomass resource availability annually was about 1.37 × 109 dry tons from forestlands and croplands.1 Recently, utilization of biomass for bioenergy or biochemicals has attracted great attention.2−6 For the production of biopolyols or biobased polymers, pyrolysis and liquefaction are two common pathways. However, liquefaction has more potential in converting biomass into valuable products because of its mild reaction conditions compared to pyrolysis.7−9 Liquefaction of biomass using organic solvents under conventional heating sources, such as oil has been carried out before, and the liquefied products have been also evaluated for the preparation of polyurethane foams10,11 and phenolic resins.12,13 Usually, in the conventional liquefaction system, inefficient thermal conduction on the surface of the feedstocks results in ineffective energy utilization, and very fine feedstock grinding (smaller than 200 mesh) was required because fine particles increase overall heat transfer in a certain extent.

Biomass Feedstock

Biomass is widely considered as an important feedstock because of its renewability, ease of degradation, and availability. According to Perlack and Stokes, the current biomass resource availability annually was about 1.37 × 109 dry tons from forestlands and croplands.1 Recently, utilization of biomass for bioenergy or biochemicals has attracted great attention.2−6 For the production of biopolyols or biobased polymers, pyrolysis and liquefaction are two common pathways. However, liquefaction has more potential in converting biomass into valuable products because of its mild reaction conditions compared to pyrolysis.7−9 Liquefaction of biomass using organic solvents under conventional heating sources, such as oil has been carried out before, and the liquefied products have been also evaluated for the preparation of polyurethane foams10,11 and phenolic resins.12,13 Usually, in the conventional liquefaction system, inefficient thermal conduction on the surface of the feedstocks results in ineffective energy utilization, and very fine feedstock grinding (smaller than 200 mesh) was required because fine particles increase overall heat transfer in a certain extent.

Particle Size

Biomass is widely considered as an important feedstock because of its renewability, ease of degradation, and availability. According to Perlack and Stokes, the current biomass resource availability annually was about 1.37 × 109 dry tons from forestlands and croplands.1 Recently, utilization of biomass for bioenergy or biochemicals has attracted great attention.2−6 For the production of biopolyols or biobased polymers, pyrolysis and liquefaction are two common pathways. However, liquefaction has more potential in converting biomass into valuable products because of its mild reaction conditions compared to pyrolysis.7−9 Liquefaction of biomass using organic solvents under conventional heating sources, such as oil has been carried out before, and the liquefied products have been also evaluated for the preparation of polyurethane foams10,11 and phenolic resins.12,13 Usually, in the conventional liquefaction system, inefficient thermal conduction on the surface of the feedstocks results in ineffective energy utilization, and very fine feedstock grinding (smaller than 200 mesh) was required because fine particles increase overall heat transfer in a certain extent.

Meet the Author

Dr. Todd Shupe is the President of Wood Science Consulting, LLC. He is a well-recognized expert on wood forensics, wood preservation, wood decay and degradation, and wood species identification. He has a broad background in new product development, quality management, and marketing and sales in both the public and private sectors. For more information please visit DrToddShupe.com.

We welcome your comments below.

Thank you for visiting.  We trust that you have enjoyed reading our articles.

Liked this post?  Read more below or search for more topics . . .